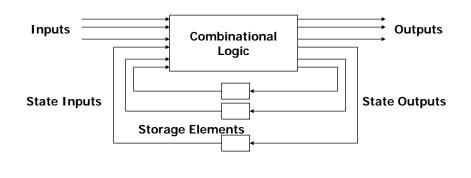
Finite State Machines

- Sequential circuits
 - primitive sequential elements
 - combinational logic
- Models for representing sequential circuits
 - finite-state machines (Moore and Mealy)
- Basic sequential circuits revisited
 - shift registers
 - counters
- Design procedure
 - state diagrams
 - state transition table
 - next state functions
- Hardware description languages

Slides from CSE 370 - University of Washington

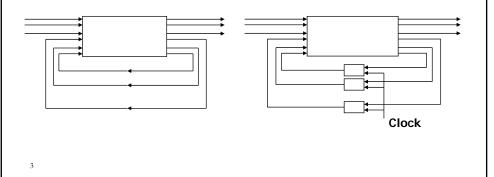
Abstraction of state elements

- Divide circuit into combinational logic and state
- Localize the feedback loops and make it easy to break cycles
- Implementation of storage elements leads to various forms of sequential logic



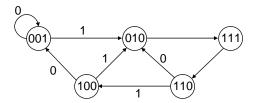
Forms of sequential logic

- Asynchronous sequential logic state changes occur whenever state inputs change (elements may be simple wires or delay elements)
- Synchronous sequential logic state changes occur in lock step across all storage elements (using a periodic waveform - the clock)



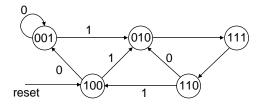
Finite state machine representations

- States: determined by possible values in sequential storage elements
- Transitions: change of state
- Clock: controls when state can change by controlling storage elements
- Sequential logic
 - sequences through a series of states
 - based on sequence of values on input signals
 - clock period defines elements of sequence



Example finite state machine diagram

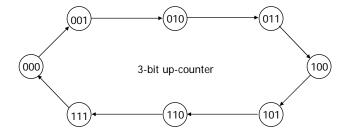
- 5 states
- 8 other transitions between states
 - 6 conditioned by input
 - 1 self-transition (on 0 from 001 to 001)
 - 2 independent of input
- 1 reset transition (from all states) to state 100



5

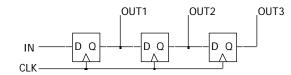
Counters are simple finite state machines

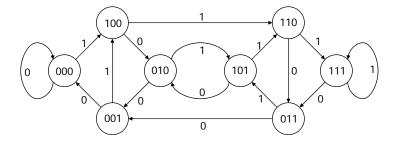
- Counters
 - proceed through well-defined sequence of states in response to enable
- Many types of counters: binary, BCD, Gray-code
 - □ 3-bit up-counter: 000, 001, 010, 011, 100, 101, 110, 111, 000, ...
 - □ 3-bit down-counter: 111, 110, 101, 100, 011, 010, 001, 000, 111, ...



Can any sequential system be represented with a state diagram?

- Shift register
 - input value shown on transition arcs
 - output values shown within state node

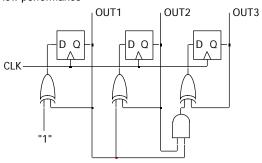




7

How do we turn a state diagram into logic?

- Counter
 - 3 flip-flops to hold state
 - logic to compute next state
 - clock signal controls when flip-flop memory can change
 - wait long enough for combinational logic to compute new value
 - don't wait too long as that is low performance



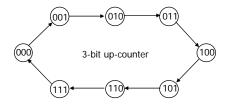
FSM design procedure

- Start with counters
 - simple because output is just state
 - simple because no choice of next state based on input
- State diagram to state transition table
 - tabular form of state diagram
 - like a truth-table
- State encoding
 - decide on representation of states
 - for counters it is simple: just its value
- Implementation
 - flip-flop for each state bit
 - combinational logic based on encoding

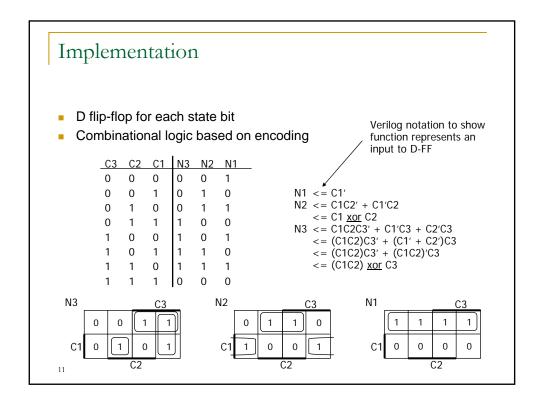
0

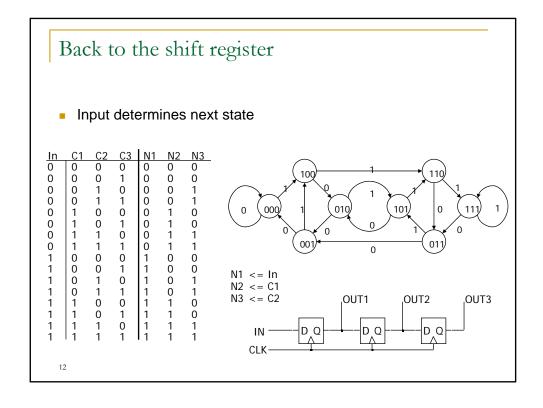
FSM design procedure: state diagram to encoded state transition table

- Tabular form of state diagram
- Like a truth-table (specify output for all input combinations)
- Encoding of states: easy for counters just use value



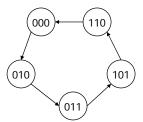
current state		next state		
0	000	001	1	
1	001	010	2	
2	010	011	3	
3	011	100	4	
4	100	101	5	
5	101	110	6	
6	110	111	7	
7	111	000 0		





More complex counter example

- Complex counter
 - □ repeats 5 states in sequence
 - not a binary number representation
- Step 1: derive the state transition diagram
 - □ count sequence: 000, 010, 011, 101, 110
- Step 2: derive the state transition table from the state transition diagram



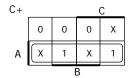
Present State					
С	В	Α	C+	B+	<u> </u>
0	0	0	0	1	0
0	0	1	l –	_	_
0	1	0	0	1	1
0	1	1	1	0	1
1	0	0	_	_	_
1	0	1	1	1	0
1	1	0	0	0	0
1	1	1	_	_	_
			l		

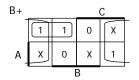
note the don't care conditions that arise from the unused state codes

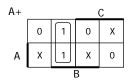
1

More complex counter example (cont'd)

Step 3: K-maps for next state functions





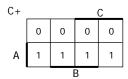


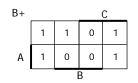
$$C+ <= A$$

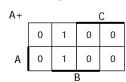
$$B+ <= B' + A'C'$$

Self-starting counters (cont'd)

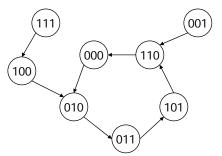
Re-deriving state transition table from don't care assignment







Pre C	sent : B	State A	Nex C+	t Stat	ie A+
0	0	0	0	1	0
0	0	1	1	1	0
0	1	0	0	1	1
0	1	1	1	0	1
1	0	0	0	1	0
1	0	1	1	1	0
1	1	0	0	0	0
1	1	1	1	0	0

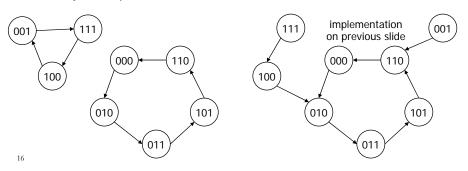


15

Self-starting counters

- Start-up states
 - at power-up, counter may be in an unused or invalid state
 - designer must guarantee that it (eventually) enters a valid state
- Self-starting solution

 - may limit exploitation of don't cares



Activity

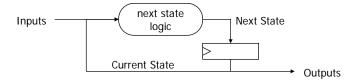
- 2-bit up-down counter (2 inputs)
 - \Box direction: D = 0 for up, D = 1 for down
 - \Box count: C = 0 for hold, C = 1 for count

17

Activity (cont'd)

Counter/shift-register model

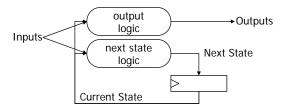
- Values stored in registers represent the state of the circuit
- Combinational logic computes:
 - next state
 - function of current state and inputs
 - outputs
 - values of flip-flops



19

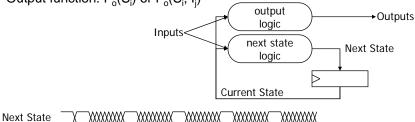
General state machine model

- Values stored in registers represent the state of the circuit
- Combinational logic computes:
 - next state
 - function of current state and inputs
 - outputs
 - function of current state and inputs (Mealy machine)
 - function of current state only (Moore machine)



State machine model (cont'd)

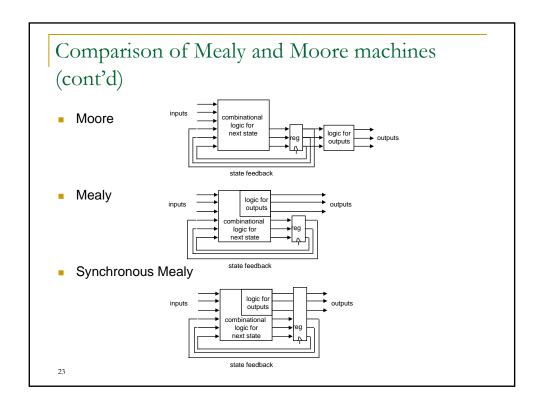
- States: S₁, S₂, ..., S_k
- Inputs: I₁, I₂, ..., I_m
- Outputs: O₁, O₂, ..., O_n
- Transition function: F_s(S_i, I_i)
- Output function: $F_o(S_i)$ or $F_o(S_i, I_j)$



State Clock 0 1 2 3 4 5

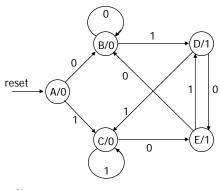
Comparison of Mealy and Moore machines

- Mealy machines tend to have less states
 - □ different outputs on arcs (n²) rather than states (n)
- Moore machines are safer to use
 - outputs change at clock edge (always one cycle later)
 - in Mealy machines, input change can cause output change as soon as logic is done – a big problem when two machines are interconnected – asynchronous feedback may occur if one isn't careful
- Mealy machines react faster to inputs
 - react in same cycle don't need to wait for clock
 - in Moore machines, more logic may be necessary to decode state into outputs – more gate delays after clock edge



Specifying outputs for a Moore machine

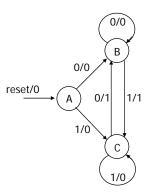
- Output is only function of state
 - specify in state bubble in state diagram
 - example: sequence detector for 01 or 10



01 01 10						
		current	next			
reset	input	state	state	output		
1	_	_	Α			
0	0	Α	В	0		
0	1	Α	С	0		
0	0	В	В	0		
0	1	В	D	0		
0	0	С	Ε	0		
0	1	С	С	0		
0	0	D	E	1		
0	1	D	С	1		
0	0	Ε	В	1		
0	1	E	D	1		
			•			

Specifying outputs for a Mealy machine

- Output is function of state and inputs
 - specify output on transition arc between states
 - example: sequence detector for 01 or 10

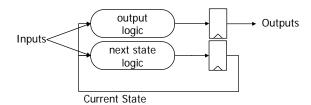


		current	next	
reset	input	state	state	output
1	-	-	Α	0
0	0	Α	В	0
0	1	Α	С	0
0	0	В	В	0
0	1	В	С	1
0	0	С	В	1
0	1	С	С	0

25

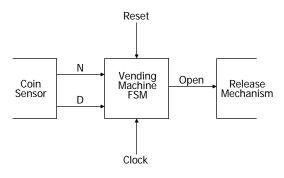
Registered Mealy machine (really Moore)

- Synchronous (or registered) Mealy machine
 - registered state AND outputs
 - avoids 'glitchy' outputs
 - easy to implement in PLDs
- Moore machine with no output decoding
 - outputs computed on transition to next state rather than after entering
 - view outputs as expanded state vector



Example: vending machine

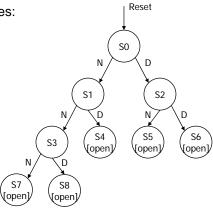
- Release item after 15 cents are deposited
- Single coin slot for dimes, nickels
- No change



27

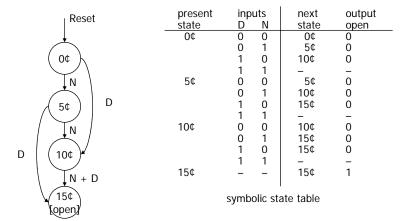
Example: vending machine (cont'd)

- Suitable abstract representation
 - tabulate typical input sequences:
 - 3 nickels
 - nickel, dime
 - dime, nickel
 - two dimes
 - draw state diagram:
 - inputs: N, D, reset
 - output: open chute
 - assumptions:
 - assume N and D asserted for one cycle
 - each state has a self loop for N = D = 0 (no coin)



Example: vending machine (cont'd)

Minimize number of states - reuse states whenever possible

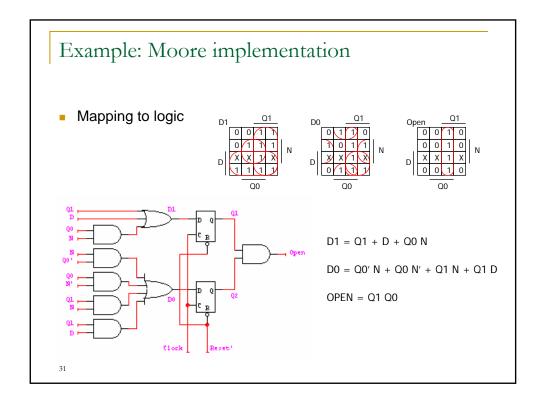


29

Example: vending machine (cont'd)

Uniquely encode states

present state			next state	
Q1 Q0	D	N	D1 D0	open
0 0	0	0	0 0	0
	0	1	0 1	0
	1	0	1 0	0
	1	1		_
0 1	0	0	0 1	0
	0	1	1 0	0
	1	0	1 1	0
	1	1		
1 0	0	0	1 0	0
	0	1	1 1	0
	1	0	1 1	0
	1	1		
1 1	-	-	1 1	1



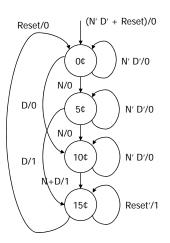
Example: vending machine (cont'd)

One-hot encoding

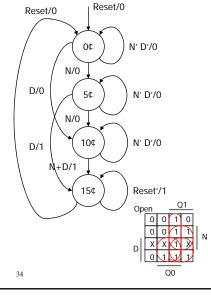
present state	inputs	next state outpo	ut	
Q3 Q2 Q1 Q0	D N	D3 D2 D1 D0	open	
0 0 0 1	0 0	0 0 0 1	0	D0 = O0 D' N'
	0 1	0 0 1 0	0	D0 - Q0 D 1V
	1 0	0 1 0 0	0	54 66 11 64 5: 11:
	1 1		<u>-</u>	D1 = Q0 N + Q1 D' N'
0 0 1 0	0 0	0 0 1 0	0	
	0 1	0 1 0 0	0	D2 = Q0 D + Q1 N + Q2 D' N
	1 0	1 0 0 0	0	
	1 1		<u>-</u>	D2 01 D : 02 D : 02 N :
0 1 0 0	0 0	0 1 0 0	0	D3 = Q1 D + Q2 D + Q2 N +
	0 1	1 0 0 0	0	
	1 0	1 0 0 0	0	OPEN = Q3
	1 1			
1 0 0 0		1 0 0 0	1	

Equivalent Mealy and Moore state diagrams

- Moore machine
 - outputs associated with state
- Mealy machine
 - outputs associated with transitions



Example: Mealy implementation



present state Q1 Q0	inp D	uts N	next D1	state D0	output open
0 0	0	0	0	0	0
	0	1	0	1	0
	1	0	1	0	0
	1	1	_	_	_
0 1	0	0	0	1	0
	0	1	1	0	0
	1	0	1	1	1
	1	1	_	_	_
1 0	0	0	1	0	0
	0	1	1	1	1
	1	0	1	1	1
	1	1	_	_	_
1 1	-	-	1	1	1
			1		

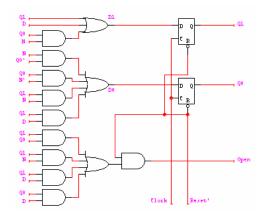
Example: Mealy implementation

D0 = Q0'N + Q0N' + Q1N + Q1D

D1 = Q1 + D + Q0N

OPEN = Q1Q0 + Q1N + Q1D + Q0D

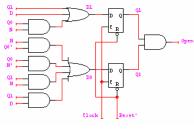
make sure OPEN is 0 when reset – by adding AND gate

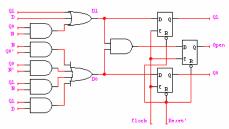


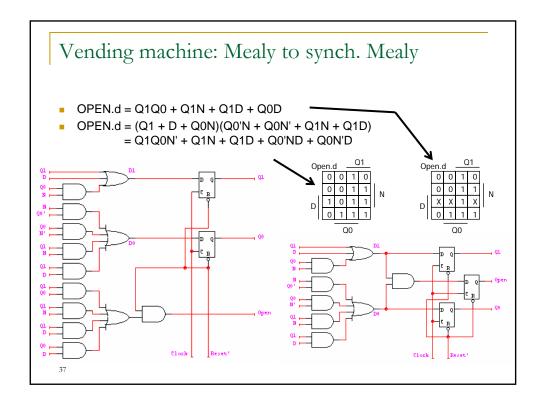
35

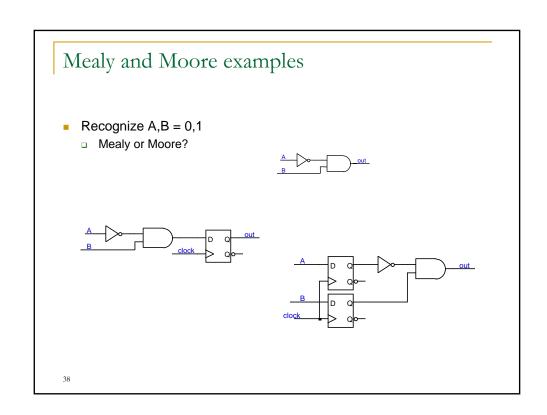
Vending machine: Moore to synch. Mealy

- OPEN = Q1Q0 creates a combinational delay after Q1 and Q0 change in Moore implementation
- This can be corrected by retiming, i.e., move flip-flops and logic through each other to improve delay
- OPEN.d = (Q1 + D + Q0N)(Q0'N + Q0N' + Q1N + Q1D) = Q1Q0N' + Q1N + Q1D + Q0'ND + Q0N'D
- Implementation now looks like a synchronous Mealy machine
 - u it is common for programmable devices to have FF at end of logic

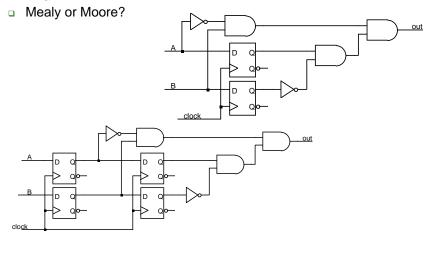








Recognize A,B = 1,0 then 0,1

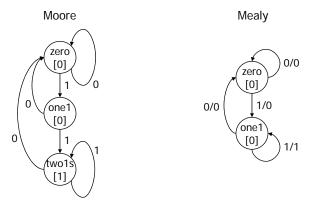


Hardware Description Languages and Sequential Logic

- Flip-flops
 - representation of clocks timing of state changes
 - asynchronous vs. synchronous
- FSMs
 - structural view (FFs separate from combinational logic)
 - □ behavioral view (synthesis of sequencers not in this course)
- Data-paths = data computation (e.g., ALUs, comparators) + registers
 - use of arithmetic/logical operators
 - control of storage elements

Example: reduce-1-string-by-1

Remove one 1 from every string of 1s on the input



41

42

Verilog FSM - Reduce 1s example

```
state assignment
Moore machine
                                                       (easy to change,
module reduce (clk, reset, in, out);
                                                       if in one place)
  input clk, reset, in;
  output out;
 parameter zero = 2'b00;
parameter one1 = 2'b01;
                                                                  zero
  parameter two1s = 2'b10;
                                                                   [0]
  reg out;
reg [2:1] state;
                           // state variables
  reg [2:1] next_state;
                                                                  one1
  always @(posedge clk)
                                                                   [0]
    if (reset) state = zero;
    else
               state = next_state;
                                                                  two1s
```

Moore Verilog FSM (cont'd)

```
always @(in or state) ←
                                               crucial to include
  case (state)
                                               all signals that are
    zero:
                                               input to state determination
  // last input was a zero
     if (in) next_state = onel;
     else
           next_state = zero;
   end
                                                      note that output
    one1:
  // we've seen one 1
                                                      depends only on state
   begin
     if (in) next_state = two1s;
           next_state = zero;
                                           always @(state)
  // we've seen at least 2 ones
                                             case (state)
   begin
                                              zero: out = 0;
     if (in) next_state = two1s;
                                               one1: out = 0;
            next_state = zero;
     else
                                              two1s: out = 1;
   end
                                              endcase
  endcase
                                         endmodule
```

Mealy Verilog FSM

```
module reduce (clk, reset, in, out);
  input clk, reset, in;
  output out;
  reg out;
  reg state; // state variables
  reg next_state;
  always @(posedge clk)
    if (reset) state = zero;
else state = next_state;
                                                                           0/0
                                                                   zero
  always @(in or state)
    case (state)
                                                                   [0]
      zero:
                         // last input was a zero
     begin
                                                           0/0
                                                                      1/0
        out = 0;
       if (in) next_state = one;
                                                                   one1
       else next_state = zero;
                                                                   [0]
     end
                         // we've seen one 1
     if (in) begin
        next_state = one; out = 1;
     end else begin
        next_state = zero; out = 0;
    endcase
endmodule
```

Synchronous Mealy Machine

```
module reduce (clk, reset, in, out);
 input clk, reset, in;
 output out;
 reg out;
 reg state; // state variables
 always @(posedge clk)
   if (reset) state = zero;
    case (state)
     zero:
              // last input was a zero
    begin
      out = 0;
      if (in) state = one;
      else state = zero;
     end
           // we've seen one 1
     one:
     if (in) begin
       state = one; out = 1;
     end else begin
       state = zero; out = 0;
   endcase
endmodule
```

Finite state machines summary

- Models for representing sequential circuits
 - abstraction of sequential elements
 - finite state machines and their state diagrams
 - inputs/outputs
 - Mealy, Moore, and synchronous Mealy machines
- Finite state machine design procedure
 - deriving state diagram
 - deriving state transition table
 - determining next state and output functions
 - implementing combinational logic
- Hardware description languages